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Treated in the present paper are the second-order effects, i.e. the effect of dis- 
placement thickness, longitudinal curvature, external shear and slip, on the 
two-dimensional laminar boundary-layer flow of incompressible fluid. The ana- 
lysis is developed in terms of the stream-function co-ordinates proposed for the 
analysis of the rotational flow by the senior author previously. An inverse 
problem is set in the co-ordinates plane, and, within the framework of the 
second-order approximation, the problem is reduced to solving a parabolic 
partial differential equation for the total head. An implicit finite-difference 
scheme is then devised to solve the equation, and the practical computations are 
carried out for the flow along a flat plate or the one around a parabolic body, by 
making use of an electronic computer. 

1. Introduction 
In  connexion with the research on hypersonic low-density flow, attacks on the 

problem of the so-called second-order effects, i.e. the effect of displacement thick- 
ness, longitudinal curvature, transverse curvature (axisymmetric case), external 
shear and slip, on the laminar boundary-layer flow have been attempted by 
many authors in recent years. According to analytical views, as set forth soundly 
by Van Dyke ( 1 9 6 2 ~ ) )  the problem is reduced to solving asymptotically the full 
Navier-Stokes equations for large Reynolds number, Re, within the framework 
of the second-order approximation, that is, taking into account the terms up to 
of order (Re)+. 

An orthodox approach to the problem could be made by an analytical method 
to solve the equations through expansion in a series such as the Blasius series in 
classical boundary-layer theory. In  the second-order problem, however, the 
method has a limitation in its application since the equations under considera- 
tion are too complicated by the expansion in series. So some numerical methods 
to solve the equations for each individual case by making use of electronic com- 
puters have been devised by Elottner & Flugge-Lotz (1963)) Davis & Flugge- 
Lotz (1964), Fanneliip & Flugge-Lotz (1966) and others. It seems to the authors, 
however, that their methods resort too much to the efficiency of electronic 
computers but then lose something in the analytical simplicity. 

In  previous papers (Honda 1965, 1966), the senior author proposed a set of 
co-ordinates called stream function co-ordinates, which are composed of the 
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stream function $ and a function $ to be constant on each trajectory perpen- 
dicular to the streamlines in the flow field, for the analysis of inviscid rotational 
flow. The co-ordinate system is now extended to the case of viscous flow and 
applied to the analysis of the second-order effects on the two-dimensional laminar 
boundary-layer flow of incompressible fluid. Namely, we start with the Navier- 
Stokes equations in terms of the stream function co-ordinates and have two sets 
of equations, inviscid and viscous, within the framework of the second-order 
approximation. On the assumption that the inviscid solution in the (4, @)-plane 
is given in advance, the viscous solution in the stretched (4, (&))$)-plane is 
formed by introduction of the concept of the matched asymptotic expansions 
(e.g. Van Dyke 1 9 6 4 ~ ) .  The problem is then reduced to solving a parabolic 
partial differential equation similar to the KBrmBn-Millikan (1934) equation in 
the classical theory. It should be noted here that our approach is an inverse 
method in view of the fact that the effect of displacement thickness is interpreted 
as the shift of the body surface on the physical plane. 

Next, an implicit finite-difference scheme is devised to solve numerically the 
differential equation mentioned above. The practical computations to clarify 
each effect on the boundary-layer flow are then carried out for the flow along a 
flat plate or the one around a parabolic body, by making use of an electronic com- 
puter, and the results obtained are shown in comparison with available ones 
obtained by the analytical methods. 

2. Fundamental equations 
2.1. Navier-Stokes equations in t e r m  of stream function co-ordinates 

Consider a two-dimensional steady flow of an incompressible viscous fluid. If 
we write the Navier-Stokes equations in terms of the streamline co-ordinates, 
denoting the distance measured along a streamline by s and the distance measured 
perpendicular to it by n in the physical (2, y)-plane, the continuity equation is 

i a q  ae --+- = 0, 
qas an 

where q is the magnitude of velocity and 8 the direction angle of the velocity to 
the x-axis. The momentum equations are 

and 

aw - aH - - - y -  
as 2n 

aw 
an as - - q w + v - ,  
aH _ -  

provided that the total head H ,  

and the vorticity o, 
H = 4q2+ (PlP) ,  (2.4) 

(2.5) 
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are chosen as the dependent variables. Here v is the kinematic viscosity, p the 
pressure and p the density. Equation (2.3) can be rewritten also in an alternative 
form, i.e. 

Let us now refer all lengths to a typical length L, and the magnitude of velocity 
to a characteristic velocity U,, then the kinematic viscosity v in the above equa- 
tions is referred to the reciprocal of the characteristic Reynolds number, 

R e  = C{L,/v. 

Further, we shall non-dimensionalize the pressure p with respect to pUz. 
Next, we introduce the stream function co-ordinates which are composed of 

the stream function $ and a function q5 defined to be constant on each trajectory 
perpendicular to the streamlines in the flow field. Transformation of the stream- 
line co-ordinates to the stream function co-ordinates (Honda 1965), which is 
defined as 

and asp$ = w/q2, 

in (2.2) and (2.3) yields 
e"(aHlaq5) = - v(aw/a@) 

and aH/a@ = - w + v eQ(awlaq5). (2.10) 

Similarly, (2.1) and (2.6) are transformed into 

and 

respectively. In  addition, the local relation between the stream function co- 
ordinates (6, $) and the Cartesian co-ordinates (x, y )  in the physical plane can be 

d z  + i d y  = (eie/q) (e-" dq5 + i d@), (2.13) 
written as 

where i denotes an imaginary unity. 

2.2. Inviscid approximation 
If we ignore the terms of order v in the non-dimensionalized equations (2.9) to 
(2.12)) these equations are reduced to the so-called Euler-type inviscid equations 

aH/a+ = 0; w = - ( d ~ / a + q  (2.14) 
such as 

and eQ(aP/a+) - q"aela$) = 0, (2.15 a)  

(apia$) + q 2  efi(aoiaq5) = 0, (2.15 b )  

where 

In  particular, in irrotational flow 

(2.16) 

w = o ;  a=o  (2.17) 
10-2 
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mid then q5 reduces to the velocity potential. In  this case, the solution of the in- 
viscid equations becomes an exact solution of the full Navier-Stokes equations, 
but the solution cannot satisfy the boundary condition on the body surface. 
Namely, the inviscid approximation fails to be valid in the layer surrounding the 
body surface. In  order to prevent this failure, we must introduce an alternative 
form of approximation to be valid in the layer, that is, the boundary-layer 
approximation. 

2.3. Boundary-layer approximation 

On the analogy of Prandtl boundary-layer theory, we introduce the stretched 
co-ordinate $* = $ / v k  (2.18) 
Taking into account that the non-dimensionalized vorticity Q grows to that of 
the order l / v* ,  we change the notation so that 

w* = v*o. (2.19) 
In  terms of the stretched co-ordinates ($, $*), the Navier-Stokes equations 
(2.9) to (2.12) are transformed to 

en(aH/a$) = - (aw*/a+*), (2.20a) 
(2.20 b )  (aH/a+*) = - W* + v e"(aw*/a$) 

and ( 2 . 2 1 ~ ~ )  

(2.21b) 

(2.22) 

Ifwe ignore the terms of order of v in these equations as in the inviscid approxima- 
tion, ( 2 . 2 0 ~ ~ ~  b )  are reduced to 

Equation (2.21 a )  gives 
hence (apja+*) = - v3q2eQ(dB*/d$) 

e = 6*($) + O(Vi),  

and 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

It is easily understood that, if the terms of order v* are ignored further in the 
above equations, (2.23) reduces to the classical first-order boundary-layer equa- 
tion introduced by K&rm&n & Millikan. 

3. Inverse problem in the (+, +**)-plane 
3.1. Matching of the solutions 

Let us set a problem; assume that an inviscid solution in the (Ql, @)-plane is 
given in advance, and then obtain a viscous solution in the ($, +*)-plane to be 
matched to the inviscid solution. To solve the problem, we introduce the concept 
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ofthe matched asymptotic expansions (e.g. Van Dyke 1 9 6 4 ~ ) .  Namely, the vis- 
cous solution is determined under the condition that the asymptotic form of the 
solution for large $* should be matched to the asymptotic form of the inviscid 
solution for small $ within the framework of the approximation of order v&. 

In  the inviscid solution, assume that the body surface is expressed with 
@ = 0 and the solution can be expanded regularly in the power series of @ as 

H = $ + w o @ +  ... (wo = const.), ( 3 . l a )  follows : 

and 

Here we set the reference pressure equal to zero and have 

and 

( 3 . l b )  

( 3 . l c )  

( 3 . l d )  

( 3 . l e )  

( 3 . 2 ~ )  
(3 .2b )  

In case of the inviscid rotational flow, for convenience, we change the notation 
so that Q-Q,,($)-+Q and exp[-Qo($)]dq5+d$. (3 .3 )  

It is evident that both the inviscid and the viscous equations are not altered in 
the form by this transformation, with an exception that (3 .1  e )  is rewritten as 

52 = a,($)@+ .... (3 .4 )  

Substitution of ( 3 . l a - d )  and (3 .4)  into (2 .15a ,  b )  and (2 .16)  gives the following 
relations between the values at @ = 0 and their derivatives with respect to $, 

and 

( 3 . 5 a )  

(3 .5  b )  
( 3 . 5 4  

( 3 . 5 4  

where the prime denotes the differentiation with respect to $. In terms of the 
stretched co-ordinates, therefore, the inviscid solution is expressed as 

and 

within the approximation of order v*. 
In the matching, we have first 

0*(4) = O O ( $ ) ,  

( 3 . 6 a )  

(3 .6b )  

(3 .66)  

( 3 . 6 d )  

(3 .6e )  

(3 .7 )  
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in comparison with matching (2.24) and (3.6d). If we denote q2 in the inviscid 
solution by U2, i.e. 

(3.8) 

integration of (2.26) gives en = (U/q )  + O(v4). (3.9) 

get 
Substituting it into the term of order v* and integrating the equation again, we 

Q = -log q + vso; sd' p d$* + C($). (3.10) 

Here an arbitrary function of $, C($), should be determined on the matching 
principle. Since q -+ U as +* + co, the principle yields 

-,:%+* = -&log u2+vie;+*+v~e; Iom (:-l)a@*+c($), (3.11) fn 
in view of (3.6e). Taking into account that 

$ log U 2  = + logfo + d ( 6 ;  + w,/fo) $*, (3.12) 

we have C($) = 5:; log f o  - vh9;jorn (4 - 1) d$*. 

Consequently, the solution of Q is obtained in the form 

or 

(3.13) 

(3.14) 

(3.15) 

In the similar way, we get 

p = g(1- u ~ ) + v + ~ , + * - v ~ f O O ; ~ ~ ~  (l-$+*, (3.16) 

which results in the following relation between H and q2; 

1 - 2 ( H -  v f o o ~ * )  = Uz-q2+  2v4f06A/t1 (1 - 5) a$*. (3.17) 

The flow-direction angle 6 can be obtained also under the same procedure. Inte- 
gration of (2.21a.) gives 

in which we can rewrite 

Hence, we have 

(3.18) 

(3.19) 

(3.20) 

within the approximation of order vi. 
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3.2. Displacement thickness 
As mentioned in 9 1, our problem is an inverse one because the body shape derived 
from the viscous solution in the ($,$*)-plane becomes different from that 
assumed for the inviscid solution in advance.? The distance along a q5 = const. 
line in the viscous solution is 

n = (3.21) 

On the other hand, the distance in the inviscid solution is 

Therefore, the body surface corresponding to $* = 0 is shifted with 

from the original position. 

as 

(3.22) 

(3.23) 

In  the usual notation, i.e. v+d$* = qdn, the quantity defined above is expressed 

(3.24) 

the displacement thickness.$ The body shape in the physical (x, y)-plane becomes 

xb = :zo + S* sin B,, 
y& = yo - 6” cos B,, 

(3.25 a) 

(3.253) 

within the approximation of order vi. Here the co-ordinates (zo, yo) denote the 
body shape assumed for the inviscid solution. The local slope of the body surface 

0, = oO-f$(da*/d#) (3.26) e b  is derived as 

from (3.20). 

4. Numerical method of solution 
The partial differential equation for the total head H, equation (2.23), is a 

nonlinear parabolic equation, regardless of the first- and second-order approxi- 
mations. It means that the mathematical treatment of the equation is quite 
similar up to the second-order approximation. For simplicity, let us describe 
a computation scheme to solve the first-order equation. 

displacement surface in the direct problem (Catherall & Mangler 1966). 

(1965), while Schultz-Grunow & Breuer (1965, p. 377) define the thickness as 

t The body surface assumed for the inviscid solution in advance corresponds to the 

$, The present definition of the displacement thickness is the same as the one by Murphy 

and Werle & Davis (19GG) define it as 
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The first-order equation which is obtained by setting v4 = 0 in equations 
( 2 . 2 5 ) ,  (3.15) and (3 .17)  is certainly the K&rm&n-Millikan equation: 

(;)2= 1 - - ,  1 - 2 H  
u; 

where u; = fo(4) .  
Transformation of variables 

in the above equations yields 

( 4 . 1 ~ )  

(4 . lb)  

( 4 . 1 ~ )  

(4.2) 

(4.3n) 

(4 .36)  

and u2 = 1-h ,  (4 .4 )  

where we change the notation so that 

qlUo-tu- 

The boundary conditions to be satisfied by h are 

h = 1 at t = 0 (no-slip case), 
h+O as t+co. 

(4.5) 

(4 .64  
(4 .6b )  

As is well known, (4.30,) has a defect for the numerical calculation because 

h = 1-at++/?a-~t~+O(t2) ,  (4 .7a)  

(4 .7b)  

there is a singularity a t  t = 0, written in such a form as 

Ph/at2 = pa-it-4 + O( 1 ) .  

In order to obviate this defect, we change the independent variable t to 7, 

t = &q2, (4 .8 )  

then (4 .9 )  

To solve the equation numerically, we adopt an implicit finite-difference scheme 
as described in the following. 

Consider a general problem to obtain the value of h on a line $ = 4 from the 
value on EL line Q = 4 - A$ in the (9, v)-plane. (In practice, a function ,$ suitable 
to each problem will be chosen in place of $, but the treatment is ent,irely the 
same.) First, by replacing the $-derivative appearing on the right-hand side in 
(4 .9)  by the finite difference as 

(4 .10)  
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we have 

(4.11) 

There are two courses in solving the above equation: one is to solve it as an 
ordinary differential equation with respect to 7 by using the Runge-Kutta or 
other method (eg. Smith & Clutter 1963,1965), the other to solve it through the 
conversion of the differential equation to a difference equation (e.g. Blottner 
& Flugge-Lotz 1963; Krause 1967). We take the latter course because the problem 
under consideration is a two-point boundary-value problem and the latter is 
preferable to the former for the problem. 

Let us replace the boundary condition (4.6 6 )  by the condition 

h = 0 at  7 = qiv, (4.12) 

choosing a definite value y N  suitably. We next divide rN into N by an equal 
interval Ay and denote the value of h at 7 = mAy by hnZ. By replacing the first 
and second derivatives with respect to 7 on the left-hand side in (4.11) by finite 
differences through the Lagrange 5-point difference formula, we can convert the 
equation to a set of quasi-linear simultaneous equations for h, (1 < m < N - 1) 
which can be expressed in the form 

(4.13n) 

m+2 
2 anl,nhn = 6 ,  (2 < m < N - 2 ) ,  (4.13 b) 

n=m- 2 

LV 

n=,V-4 
E aN-l,nhn = ' ~ - 1 1  

where h, = 1, hN = 0. 

(4.13 c)  

(4.14) 

The coefficients in the above equations include 

u,, = [l - hm]* (4.15) 

but they could be calculated by the usual iteration process. The practical calcula- 
tions, in which A7 = 0.1, N = 30; = 3.0 (4.16) 

are taken, were carried out by making use of the electronic computer, HITAC- 
5020 E, in the Computation Centre, University of Tokyo. In order to exhibit the 
accuracy of our numerical method, let us first describe some results obtained for 
the first-order boundary-layer problem before the second-order problem. 

5. First-order boundary-layer problem 

Assume that the velocity distribution along a flat plate is described with 
6.1. Howarth velocity distribution 

U,(s) = 1 - s (5-1) 
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in the inviscid solution, where s is the distance measured from the leading edge 
of the plate. The function q5 is 

q5 = s - p, (5.2) 
hence u;($) = 1 - 295 (5.3) 

B(#) = - 4#/P - 2$)- t 5-4) 
and p(q5) defined by (4.3b) becomes 

8 

FIGURE 1. Distribution of the skin-friction coefficient for the Howarth velocity distribu- 
tion. 0, present method; H,, Howarth (1938) 8-term series solution; G,, Gortler (1957) 5-  
term series solution; H,, Howarth (1938) numerical solution; G,, Gortler (1957) numerical 
solution. 

If we change the independent variable q5 in (4.9) t o  <, 

for convenience in computation, we have 

The solution at  6 = 0 is a similar solution corresponding to the Blasius solution, 
i.e. the solution of the ordinary differential equation 

( 5 . 7 )  

In solving the equation, we start with u = 1 (Kkm&n-Millikan approximate 
method) and carry out 7-cycle iteration. The error in the value of h obtained thus 
seems to be confined to 1 x in comparison with the value derived from the 
Blasius solution tabulated accurately up to the sixth decimal (Rosenhead 1963). 
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The step-by-step computation, taking At; = 0.025, proceeds then downstream 
with 4-cycle iteration in each step. The skin friction 7 is obtained by 

in which the value of the q-derivative can be estimated through the 5-point 
difference formula. In  our computation, the value becomes minus at  t = 0.600, 
that is, the computation gives the flow-separation point between 

6 = 0.575 N 0-600; s = 0.1187 N 0.1229. 

Figure 1 shows the distribution of the skin-friction coefficient, 

c, = 2T/P, (5.9) 

emphasizing the neighbourhood of the separation point. The figure includes 
Howarth (1938) 8-term series solution, Gortler (1957) 5-term series solution and 
their numerical solutions obtained for the region where the convergence of their 
series solution becomes slow. As seen in the figure, our result coincides ’very 
nearly with the Howarth numerical solution. 

5.2. Flow around a parabolic body 
Consider first an inviscid flow around a parabolic body with nose radius of unity 
placed in a uniform stream of the velocity of unity. The solution in the (q5, @)- 
plane, i.e. the complex potential plane, is derived from the relations 

and 
x + i y  = g-g(l+g)z 

$+i@= - 2  P2, 
(5.10) 
(5.11) 

by introducing an auxiliary complex variable 6. Along the surface, putting 
@ = 0, we have xo = $, Yo = J ( W  (5.13) 

and 

Hence, /3(#) in (4.9) becomes 

Change of the variable qi to 

in (4.9) results in 

P(9)  = 2/(1 +2q5). 

t = 2$/(1+24) 

defined by 

Starting with the solution at  t; = 0, 

(6.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

which corresponds to the similar solution for the stagnation-point flow, we carry 
out the step-by-step computation up to t; = 1 with A t  = 0-05, under the same 
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procedure as employed in the previous problem. The value of the skin-friction 
coefficient is tabulated in table 1. 

In  this problem, both the Blasius series in powers of the distance from the 
nose along the body surface and the Gortler series in powers of the co-ordinate $ 
have the singularity which limits the convergence of the series. In  order to im- 
prove the convergence, applying the Euler transformation, Van Dyke (1964b) 

6 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0-30 
0.35 
0.40 
0.45 
0.50 
0.55 
0-60 
0-65 
0.70 
0-75 
0.80 
0-85 
0.90 
0.95 
1.00 

Present 
0~0000 
0.0853 
0.1669 
0.2449 
0.3190 
0.3891 
0.4550 
0.5166 
0.5734 
0.6252 
0.6721 
0.7132 
0.7483 
0.7769 
0.7982 
0.8114 
0.8153 
0.8076 
0.7860 
0.7450 
0.6664 

TABLE 1. 

Van Dyke 
(1964b) 
0~0000 
0.0854 
0.1672 
0-2452 
0.3194 
0.3895 
0.4554 
0.5168 
0.5737 
0.6256 
0.6724 
0.7137 
0.7492 
0-7784 
0.8010 
0.8165 
0.8242 
0.8237 
0.8141 
0.7949 
0.7650 

Values of (Q/U)3C,. 

Gortler 
(1!157) 
0.0000 
0.0854 
0.1 672 
0.2452 
0.3194 
0.3894 
0.4549 
0.5149 
0.5662 
0.5993 
0.5837 
0.4200 

- 0.2047 

modifies the Blasius series into a series in powers of the variable g. The values 
derived from the modified Blasius 6-term series solution and the Gortler 6- 
term series solution are included in table 1. The accumte value at  6 = 1, i.e. 
$-fa, should be the value for the flat-plate flow, that is 0.6641. 

6. Curvature effect 
Let us obtain the viscous solution, taking into account the terms up to of 

order va, to be matched to the potential flow around the parabolic body. As seen 
in (3.16), (3.16) and (3.17), the terms of order v4 manifest the curvature effect on 
the boundary-layer flow through 

Oh(#) = -1/UJ, (6.1) 

where R is the local radius of curvature of the parabolic body assumed for the 
inviscid solution. By using the variable ( defined by (5.15), 8;($) is rewritten as 
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Substituting it into (3.15) and (3.17), we have 

and 

157 

within the approximation of order ui. The differential equation for h is the same 
as the first-order equation (5.16), except that u included in the coefficients is 
replaced by e-" defined above. The boundary condition at  7 = 0, however, 
should be modified as 

h =  1-2uB(1-5) 1 - -  yay at r = o .  (6 .5)  
/om ( $ 

Analytically speaking, the second-order effects are to be linear with the 
parameter d.  In  practice, we are obliged to carry out the calculations for a 
series of small values of v*, in order to ensure the numerical results. However, it 
should be kept in mind that no significance is to be attached to any nonlinear 
variation with u* thus found, because it might be involved in unnecessary third- 
order effects. 

Taking the parameter us = 0.02, 0.04, 0.06, 0.08 and 0.10, we carry out the 
step-by-step computations under the same procedure as in the first-order prob- 
lem. Here the integrals with respect to 7 appearing in (6.3), (6.4) and (6.6) are 
calculated by adopting the trapezoid rule in such a form as 

in which the value of P(7) takes the value obtained in the cycle just before. 
Figure 2 shows the velocity profile in the boundary layer at 6 = 0, i.e. stag- 

nation point, where the distance n is calculated by applying the Simpson rule 
to the following relation 

In  appearance, it may be concluded that the effect of curvature on the skin 
friction is rather small. On the other hand, Van Dyke (19623) has obtained the 
result of 

for the curvature effect on the stagnation-point flow, where s is the distance 
measured from the stagnation point along the surface. In  our calculation, the 
skin friction is obtained from 

7/p = ~k~[1 .2326-  1*9133d] (6.8) 
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and the limit expression for $ -+ 0 is 

(6.10) 

The apparent disagreement with Van Dyke's result has, in fact, a very simple 
explanation. It is the fact that, in our problem, the body surface is shifted from 
the original position and then the nose radius of the body is affected by the 
parameter vt. 

0.0 0.2 0.4 06  0.8 1.0 
n/ ull 

FIGURE 2. Curvature effect on the velocity profile in the boundary layyer 
at the stagnation point. 

The co-ordinates of the body (zb, yo) in the physical plane are 

(6.1 1 a) 

(6.llb) 

in view of equation (3.25). On the other hand, the distance s along the surface 
can be derived as follows. 

Equation (6.3) gives 

(6.12) 
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within t.he approximation of order v4. Since 

s=So”r;] n=O dq5 

along the surface, we get 

(6.13) 

(6.14) 

where 8; denotes the displacement thickness at  $ = 0 and so the distance in the 
inviscid solution, i.e. 

(6.15) 

T 

L Van Dyke 
V Present (1962b) 
- 

L 
0.00 1.2302 0.6480 1.0000 a, 1.2302 1.2326 
0.02 1.2225 0.6589 0.9738 2435 1.1905 1.1938 
0.04 1.2147 0.6709 0.9470 591.9 1.1504 1.1540 
0.06 1.2065 0.6842 0.9196 255.4 1.1095 1.1129 
0.08 1.1981 0.6987 0.8913 139.3 1.0679 1.0705 
0.10 1.1891 0.7144 0.8622 86.2 1.0253 1-0266 

TABLE 2. Values of T = - 

The limiting process for $ + O  in (6.11), (6.14) and (6.15) gives 

(6.16) 

and s = (1  - 8:) 4(2$). (6.17) 

Equation (6.16) manifests that the nose radius of the body L becomes 

L = (1 -6$)Z. (6.18) 

Provided that the nose radius L is chosen as the typical length, we should take 
L/v as the characteristic Reynolds number and s/L as the non-dimensionalized 
length. From this point of view, we can rewrite (6.10) in the form 

(6.19) 

Table 2 shows the numerical values appearing in the above equation in compari- 
son with Van Dyke’s result, written as 

T = 1.2326- 1*9133(v/L)t (6.20) 
in the present notations. 

The body shape for v?t = 0.10 is shown in figure 3, where the chained line is a 
parabola with the nose radius L defined by (6.18). Figure 4 shows the distribution 
of the skin-friction coefficient calculated by (6.9) and of the pressure coefficient 
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00 0.5 1.0 20 25 3.0 

FIGURE 3. Body shape for v* = 0.10. - - - -, body shape assumed for the inviscid solu- 
tion; - - - , parabola with the nose radius L = (1 - C Y ~ * ) ~ .  

S l L  
FIGURE 4. Dlstribution of the skin-friction coefficient and of the pressure coefficient for 

v* = 0.10. - - - -, those for v* = 0. 
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with abscissa of the non-dimensionalized distance s/L. Here the pressure co- 
efficient C, is obtained through 

(6.21) 

to be derived from (3.16). 

7. External-shear effect 
Consider a boundary-layer flow to be matched to an inviscid shear flow 011 

a semi-infinite flat plate. Here we assume that the shear flow is described with 

u = l + w o y  (wo > 0 )  (7.1) 

in the physical plane and the plate is placed on I/ = 0, x 3 0. The inviscid shear 

( 7 . 2 a )  flow is expressed as 

w = &+wo$ (7 .2b)  

and e-Q = u ( 7 . 2 ~ )  

in the (#,$)-plane. Therefore, the outer boundary condition for the viscous 
solution in the (4, $*)-plane becomes 

uz = 1 + 2wo$, 

H -+ 4 -+ v h o  +*, 
e-* + [ I  + 2vko0 $*I4 

as $*+-03. 

If we change the dependent variable H to h, 

(7.3a) 

(7 .3  b)  

h = 1 - 2H + 2vh0$*, (7 .4 )  

in (2.23), we get ahla$ = q(aZh/a$*z). (7 .5 )  

q = [1-h+2vbo$*]a  ( 7 4  

Here the relation between h and q is 

and the boundary conditions are 

h =  1 at $ * = 0 ,  (7 .7a )  

h+O as $*-tco, (7 .76 )  

just as in the case of the uniform stream. Furthermore, changing the independent 

(7 .8 )  
variables $ and $* to E,  
and 7 in ( 7 . 5 ) ,  we have 

5 = 2 w o & W ) ,  

where p =  [ l -h++$vz ] ) .  (7.10) 

Taking A& = 0.1, we carry out the step-by-step computation up to 6 = 3.0. 
Figure 5 shows the change of the velocity profile along the downstream boundary 
layer. The distribution of the skin-friction coefficient is shown in figure 6. For 

11 Fluid Mech. 35 
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this problem, Glauert (1957) has obtained a perturbation solution starting with 
the Blasius solution, i.e. 

(7.11) 

and Mark (1962) has obtained an asymptotic solution for large 6 in the form 

(7.12) 

P 
FICURE 5. External-shear effect on the velocity profile in the boundary layer. 

Their results are also included in the figure. Figure 7 shows the distribution of the 
displacement thickness. It should be added here that the distribution obtained 
by Mark by applying the momentum integral method coincides very nearly with 
our result. 

Lastly, we must admit that the problem set up above bears a difficulty, 
although it may be inherent in the inverse problem. The co-ordinate of the plate 
surface obtained in the viscous solution is 

yo = -a*. 17.13)t 
t Provided that the normal distance w measured from the plate surface is taken in 

place of y in (7.1), the outer inviscid flow can be expressed as 

that is, the assumption adopted by Glauert and Mark. 
u = 1+w0(n-8*) ,  



Second-order eflects on laminar boundary-layer $ow 163 

This fact means that the plate under consideration is not a flat plate but a 
hollowed-out one which accommodates the displacement thickness. 

0.5 1 

FIGURE 6. Distribution of the skin-friction coefficient in the shear flow. - - - -, Glauert 
(1957) perturbation solution; - - - , Mark (1962) asymptotic solution. 
FIGURE 7. Distribution of the displacement thickness in the shear flow. 

8.1. Boundary condition on  the wall 8. Slip effect 

In  a rarefied gas flow in which the mean free path of the gas particles cannot be 
ignored in comparison with the boundary-layer thickness, i.e. in the so-called 
transition regime, the effect of slip on the boundary-layer flow must be taken into 
account. An accepted slip condition at the body surface is 

- 
= X(ap/an), A = o ( v ) ,  (8.1) 

although it may be somewhat fictitious for incompressible fluid flow since is 
proportional also to the Mach number (Murray 1965). In  terms of the stretched 
co-ordinate $*, the above condition is written as 

q = h(a@/a@*), h = X 1 2 d  = O(U+). (8.2) 

If we now ignore the curvature effect, i.e. the change of the pressure across the 
11-2 
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boundary layer, focusing our attention on the slip effect, the boundary con- 
dition to be satisfied by the function h defined in (4.2) becomes 

8.2. Xlip flow along a$at plate 
Let us consider a slip flow along a semi-infinite flat plate placed in a uniform 
stream. Change of the independent variable q5 to 6,  

'5 = (1/4 J(W7 (8.4) 

in (8.3) yields a2hla72 = - [2 / (1  -h) at 7 = 0, (8.5) 

since U, = 1. It, is easy to anticipate that there arises the perfect slip at  the leading 

(8.6) 
edge of the plate, i.e. h=O at [ = O ,  

from the condition (8.5). Accordingly, we change the dependent variable h to 

h* = h/[. (8.7) 

The differential equation for h* with respect to ( 6 , ~ )  is 

1 173 ah* 72 7 2  ah* 
(8 .8~)  ~ - - - - - -- - T:z* [7 2 q ]  a7 q h * = ' 5 - p 2  Q at 

q = [ l -  [h*]&, 
and the boundary conditions are 

(8.86) 

aZh*/af = -qo  at 7 = o (8.9) 

and h*+O as 7+m, (8.10) 

where qo is the slip velocity on the wall. 
In  the present problem, the boundary condition at 7 = 0 is not the value of 

h*, i.e. hg, but it is the value of its second derivative. To solve the problem, taking 
hg as an unknown value, we replace the condition (8.9) by the 5-point finite- 
difference formula written in such a form as 

4 
(8.11) 

and add the equation to the simultaneous equations in the form of (4.13). The 
coefficient b, includes go but it can be calculated by the iteration process, i.e. by 
using the value of hz obtained in the cycle just before. 

The starting equation is 

and d2h*/dy2 = - 1  a t  7 = 0, 

h*+O as 7+m, 

( 8 . 1 2 ~ )  

(8.12b) 

( 8 . 1 2 ~ )  
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since q = 1 at 6 = 0. The solution of this linear equation, which is expressed 
analytically with 

h" = J( :) cxp ( - g) - t erfc ($) (t = 472) (8.13) 

(Kobayashi 1958), can be obtained without iteration. Starting with the solution, 
the step-by-step computation is carried out up to 6 = 5-0 with A[ = 0.1. The 
skin-friction coefficient C' is related to the slip velocity qo in the following form 

(8.14) 

3.5 

3.0 

2.5 

2.0 

F s 
X 1.5 
.. 
c . 

1 .o 

0.5 

0.0 
'1 

FIGURE 8. Slip effect on the velocity profile in the boundary layer (flat plate). 

Figure 8 shows the variation of the velocity profile along the downstream 
boundary layer. The distribution of the slip velocity and of the skin-friction 
coefficient are shown in figures 9 and 10. An asymptotic solution for large [ has 
been obtained by Murray (1965), starting with the no-slip solution, i.e. the Blaaius 

(8.15) solution. His results are qo = O.939/c + O( 

and (8.16) 
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and those are also included in the figures. In  figure 10, we find that the skin- 
friction coefficient increases above the no-slip value on the way. This result 
seems to bear a certain similarity to the one obtained by Laurmann (1961), 
although he treats the problem in terms of the linearized Oseen method. 

The development of the displacement thickness is shown in figure 11, together 
with Murray's result 

(8 .17)  6* /1 / (2~$)  = 1.217 - 2/5+O(l/f2).  

FIGURE 9. Distribution of the slip velocity on the wall (flat plate). - - - -, M U I T A ~  (1965) 
asymptotic solution. 
FIGURE 10. Distribution of the skin-friction coefficient in the slip flow (flat plato). - - - -, 
Murray (1965) asymptotic solution. 

0.8 - 

0.6 - - 
2 
c" 
2 0 4 -  
Lo 

0.2 - 

FIGURE 11. Distribution of the displacement thickness in the slip flow (flat plate). - -- - -, 
Murray (1965) asymptotic solution. 
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In  the slip flow, the increase in the boundary-layer thickness at  the leading edge 
becomes linear, unlike the no-slip case. 

8.3. Slip$ow around a parabolic body 
In  the flat-plate problem, the slip effect is of the fiist-order near the leading edge. 
In  the blunt-body problem, however, the effect remains still in the second-order 
near the nose point, since the boundary-layer thickness is not zero but finite at  

35 - 

30 - 

2-5 - 

2.0 - 

i = I  

00 0.2 04 0.6 0.8 1.0 
alU0 

FIGURE 12. Slip effect on the velocity profile in the boundary layer 
at the stagnation point. 

that point. In  accordance with this fact, the method of solution for the blunt- 
body problem also becomes different from that in the case of flat plate. 

Changing the variable q5 to 6 defined by (5.15), we can rewrite the boundary 
condition (8.3) as 

and moreover, in the form 

J( 1 - h)  = - h .J( 1 - 6) ( a % / @ 2 )  at 11 = 0 (8.18) 

(8.19) h, = 1 - P( 1 - 6) (a2h/a?p)&o. 

If we ignore the curvature effect, the problem in hand is exactly the same as 
the first-order problem described in $5.2, except that the above condition should 
be taken in place of h, = 1. The value of ho can be obtained by the iteration pro- 
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cess; as the value of (a2h/ay2),=o in (8.19), we take the value calculated by substi- 
tuting the values of h obtained in the cycle just before into the 5-point difference 
formula. 

1.0 

0.8 

0.4 

I I 

0.0 0 1  0.2 

h 

FIGURE 13. Slip effect on the skin friction and the displacement thickness 
at the stagnation point. 

The step-by-step computations were carried out for the parameter h = 0.05, 
0-10,0.15 and 0.20, while only the results a t  the stagnation point are shown here. 
Figures 12 and 13 show the slip effect on the velocity profile in the boundary 
layer, the skin friction and the displacement thickness. In  figure 13, where the 
results obtained for h = 0.025 and 0,075 are added, we find a result that the effect 
on the skin friction is not linear to A. But, if we recall now that only the initial 
slope of the curve so obtained has in fact a significance from the analytical point 
of view, it should be concluded that the second-order slip effect itself on the skin 
friction is very little. 

9. Conclusions 
The stream function co-ordinates system is extended to viscous flow and 

applied to the analysis of the second-order effects on two-dimensional laminar 
boundary-layer flow of incompressible fluid. In  the analysis, we assume that an 
inviscid solution in terms of the co-ordinates system is given in advance and then 
obtain the viscous solution to be matched to the inviscid solution within the 
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framework of the second-order approximation. It must be recognized that such 
an approach is an inverse method because the body surface obtained in the viscous 
solution is shifted with the displacement thickness in the physical plane from the 
position assumed in advance. In  order to clarify each effect on the flow, some 
practical computations are carried out for the flow along a flat plate or around a 
parabolic body, analytically speaking, for obtaining the viscous solution to be 
matched to the inviscid solution for each flow, and the results so obtained are 
compared with available ones obtained by the analytical methods. It should be 
noted that the role of the displacement thickness played in our solution is made 
clear through the comparison, although the restriction of the solution to the 
inverse problem is still to be lifted. 

On reflexion, we see such a second-order problem is of real importance to the 
hypersonic low-density flow. Accordingly, the theory should be developed further 
to the flow of compressible fluids, strictly speaking, to the flow in a shock layer. 
In  conclusion, the authors hope to have an opportunity of publishing the analysis 
of the hypersonic low-density flow in the near future. 

The authors are indebted to Professor M. J. Lighthill, F.R.S., for his kind 
encouragement, and also to the referee for his helpful comments. 
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